1.            UMDF Conference Poster Nadeau_Allin_Mattman June 7.

2.            MITO FOOD PL AN Comprehensive Guide.

3.            CIHR’s Framework for Citizen Engagement Partnerships and Citizen Engagement Branch.

4.            http://www.PublicHealthCollaboration.org.

5.            Autophagy – a cure for many present-day diseases? – Diet Doctor.

6.            Psoriasis and Dyslipidaemia: A Population-based Study: Ingenta Connect.

7.            Five Misunderstandings About Case-Study Research. Inquiry, 2006. 12(2): p. 219-245.

8.            Involving Patients in Research: Considering Good Practice. 2013.

9.            Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. 2015, Elsevier. p. 1-13.

10.          Rare Diseases Epidemiology: Update and Overview. Advances in Experimental Medicine and Biology. Vol. 1031. 2017, Cham: Springer International Publishing.

11.          No Title. 2017, NIH Public Access. p. 262-284.

12.          Interaction between epigenetic and metabolism in aging stem cells. 2017, Elsevier Current Trends. p. 1-7.

13.          Impact of intermittent fasting on health and disease processes. 2017. p. 46-58.

14.          Aanen, D.K., J.N. Spelbrink, and M. Beekman, What cost mitochondria? The maintenance of functional mitochondrial DNA within and across generations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014. 369(1646): p. 20130438-20130438.

15.          Achanta, L.B. and C.D. Rae, β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochemical Research, 2017. 42(1): p. 35-49.

16.          Ahola, S., et al., Modified Atkins diet induces subacute selective ragged‐red‐fiber lysis in mitochondrial myopathy patients. EMBO Molecular Medicine, 2016. 8(11): p. 1234-1247.

17.          Albanese, A., et al., Phenomenology and classification of dystonia: a consensus update. Movement disorders : official journal of the Movement Disorder Society, 2013. 28(7): p. 863-73.

18.          Al-Sarraj, T., et al., Carbohydrate restriction favorably alters lipoprotein metabolism in Emirati subjects classified with the metabolic syndrome. Nutrition, Metabolism and Cardiovascular Diseases, 2010. 20(10): p. 720-726.

19.          Andersson, E., et al., [Physical activity is just as good as CBT or drugs for depression]. Lakartidningen, 2015. 112.

20.          Andrews-Hanna, J.R., et al., Disruption of Large-Scale Brain Systems in Advanced Aging. Neuron, 2007. 56(5): p. 924-935.

21.          Angermayr, L., D. Melchart, and K. Linde, Multifactorial Lifestyle Interventions in the Primary and Secondary Prevention of Cardiovascular Disease and Type 2 Diabetes Mellitus—A Systematic Review of Randomized Controlled Trials. Annals of Behavioral Medicine, 2010. 40(1): p. 49-64.

22.          Anton, S.D., et al., Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity, 2017. 00(2): p. 254-268.

23.          Arias Merino, G., et al., Mortality Statistics and their Contribution to Improving the Knowledge of Rare Diseases Epidemiology: The Example of Hereditary Ataxia in Europe. 2017. p. 521-533.

24.          Ashrafi, G. and T.L. Schwarz, The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death & Differentiation, 2013. 20(1): p. 31-42.

25.          Augustin, K., et al., Review Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. 2018.

26.          Austin, B.A. and A.D. Gadhia, New Therapeutic Uses for Existing Drugs. 2017. p. 233-247.

27.          Azevedo, F.R.d., D. Ikeoka, and B. Caramelli, Effects of intermittent fasting on metabolism in men. Revista da Associação Médica Brasileira, 2013. 59(2): p. 167-173.

28.          Baldovino, S., et al., Immunological Rare Diseases. 2017. p. 497-509.

29.          Barbieri, E., et al., The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle. Oxidative medicine and cellular longevity, 2015. 2015: p. 917085-917085.

30.          Barendregt, K., et al., Basics in clinical nutrition: Simple and stress starvation. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism, 2008. 3(6): p. e267-e271.

31.          Baynam, G., et al., Improved Diagnosis and Care for Rare Diseases through Implementation of Precision Public Health Framework. 2017. p. 55-94.

32.          Baynam, G., et al., Indigenous Genetics and Rare Diseases: Harmony, Diversity and Equity. 2017. p. 511-520.

33.          Bentzinger, C.F., et al., Cellular dynamics in the muscle satellite cell niche. 2013. p. 1062-1072.

34.          Bermejo-Sánchez, E. and M. Posada de la Paz, Congenital Anomalies: Cluster Detection and Investigation. 2017. p. 535-557.

35.          Bertile, F., et al., The Safety Limits Of An Extended Fast: Lessons from a Non-Model Organism. Scientific Reports, 2016. 6(1): p. 39008-39008.

36.          Bindoff, L.A. and B.A. Engelsen, Mitochondrial diseases and epilepsy. Epilepsia, 2012. 53(s4): p. 92-97.

37.          Bishop, K.S. and L.R. Ferguson, The interaction between epigenetics, nutrition and the development of cancer. 2015, Multidisciplinary Digital Publishing Institute (MDPI). p. 922-947.

38.          Bishop, N.A., T. Lu, and B.A. Yankner, Neural mechanisms of ageing and cognitive decline. Nature, 2010. 464(7288): p. 529-535.

39.          Bjørndal, B., et al., Different adipose depots: Their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. Journal of Obesity, 2011. 2011.

40.          Boison, D., New insights into the mechanisms of the ketogenic diet. 2017. p. 187-192.

41.          Bournat, J.C. and C.W. Brown, Mitochondrial dysfunction in obesity. Current opinion in endocrinology, diabetes, and obesity, 2010. 17(5): p. 446-452.

42.          Branco, A.F., et al., Ketogenic diets: From cancer to mitochondrial diseases and beyond. 2016.

43.          Brehm, B.J., et al., A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. The Journal of Clinical Endocrinology & Metabolism, 2003. 88(4): p. 1617-1623.

44.          Budych, K., T.M. Helms, and C. Schultz, How do patients with rare diseases experience the medical encounter? Exploring role behavior and its impact on patient–physician interaction. Health Policy, 2012. 105(2-3): p. 154-164.

45.          Burr, S.P., M. Pezet, and P.F. Chinnery, Mitochondrial DNA Heteroplasmy and Purifying Selection in the Mammalian Female Germ Line. Development, Growth & Differentiation, 2018. 60(1): p. 21-32.

46.          Busch, K.B., A. Kowald, and J.N. Spelbrink, Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philosophical Transactions of the Royal Society B: Biological Sciences, 2014. 369(1646): p. 20130442-20130442.

47.          Bussard, K.M. and L.D. Siracusa, Understanding Mitochondrial Polymorphisms in Cancer. Cancer Research, 2017. 77(22): p. 6051-6059.

48.          Camandola, S. and M.P. Mattson, Brain metabolism in health, aging, and neurodegeneration. The EMBO Journal, 2017.

49.          Carling, D., AMPK signalling in health and disease. 2017. p. 31-37.

50.          Castilla-Rodríguez, I., et al., Cost-Effectiveness Methods and Newborn Screening Assessment. 2017. p. 267-281.

51.          Castro, R., et al., Bridging the Gap between Health and Social Care for Rare Diseases: Key Issues and Innovative Solutions. 2017. p. 605-627.

52.          Cerletti, M., et al., Highly Efficient, Functional Engraftment of Skeletal Muscle Stem Cells in Dystrophic Muscles. Cell, 2008. 134(1): p. 37-47.

53.          Chinnery, P.F., et al., Treatment for mitochondrial disorders (Review) Treatment for mitochondrial disorders.

54.          Cohen, B.H., MERRF. 2016, Elsevier. p. 31-36.

55.          Coronado, M., et al., Physiological Mitochondrial Fragmentation Is a Normal Cardiac Adaptation to Increased Energy DemandNovelty and Significance. Circulation Research, 2018. 122(2): p. 282-295.

56.          Coulter, A., et al., Personalised care planning for adults with chronic or long-term health conditions. 2015. p. CD010523-CD010523.

57.          Courchesne-Loyer, A., et al., Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study. Journal of Cerebral Blood Flow & Metabolism, 2017. 37(7): p. 2485-2493.

58.          Cox, Pete J.J., et al., Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metabolism, 2016. 24(2): p. 256-268.

59.          Cramer, H., et al., A systematic review of yoga for major depressive disorder. Journal of Affective Disorders, 2017. 213: p. 70-77.

60.          Cutillo, C.M., C.P. Austin, and S.C. Groft, A Global Approach to Rare Diseases Research and Orphan Products Development: The International Rare Diseases Research Consortium (IRDiRC). 2017. p. 349-369.

61.          Day, S., Evidence-Based Medicine and Rare Diseases. 2017. p. 207-220.

62.          Dehghan, M., et al., Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet (London, England), 2017. 390(10107): p. 2050-2062.

63.          Dela Cruz, C.S. and M.-J. Kang, Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion, 2017.

64.          Delisle, V.C., et al., Perceived Benefits and Factors that Influence the Ability to Establish and Maintain Patient Support Groups in Rare Diseases: A Scoping Review. The Patient – Patient-Centered Outcomes Research, 2017. 10(3): p. 283-293.

65.          Desveaux, L., et al., Yoga in the Management of Chronic Disease. Medical Care, 2015. 53(7): p. 653-661.

66.          Devall, M., et al., Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies. Neuroscience Letters, 2016. 625: p. 47-55.

67.          Dias, R.B., et al., Adenosine: setting the stage for plasticity. Trends in Neurosciences, 2013. 36: p. 248-257.

68.          DiMauro, S. and M. Hirano, MERRF. 1993: University of Washington, Seattle.

69.          Diot, A., et al., Modulating mitochondrial quality in disease transmission: towards enabling mitochondrial DNA disease carriers to have healthy children. Biochemical Society transactions, 2016. 44(4): p. 1091-1100.

70.          Diot, A., K. Morten, and J. Poulton, Mitophagy plays a central role in mitochondrial ageing. Mammalian Genome, 2016. 27(7-8): p. 381-395.

71.          Dittenhafer-Reed, Kristin E., et al., SIRT3 Mediates Multi-Tissue Coupling for Metabolic Fuel Switching. Cell Metabolism, 2015. 21(4): p. 637-646.

72.          Duan, M., J. Tu, and Z. Lu, Recent Advances in Detecting Mitochondrial DNA Heteroplasmic Variations. Molecules, 2018. 23(2): p. 323-323.

73.          El-Hattab, A.W. and F. Scaglia, Mitochondrial Cardiomyopathies. Frontiers in Cardiovascular Medicine, 2016. 3: p. 25-25.

74.          Endocrine Society, O., et al., The journal of clinical endocrinology and metabolism. 2015: Charles C. Thomas.

75.          Enriquez, J.A., A. Chomyn, and G. Attardi, MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNALys and premature translation termination. Nature Genetics, 1995. 10(1): p. 47-55.

76.          Espay, A.J., Neurologic complications of electrolyte disturbances and acid–base balance. Handbook of Clinical Neurology, 2014. 119: p. 365-382.

77.          Fedorovich, S.V., T.V. Waseem, and L.V. Puchkova, Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Reviews in the Neurosciences, 2017. 28(4): p. 363-373.

78.          Feinman, R.D., et al., Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Elsevier.

79.          Ferrari, E., et al., PP2A Controls Genome Integrity by Integrating Nutrient-Sensing and Metabolic Pathways with the DNA Damage Response. Molecular Cell, 2017. 67(2): p. 266-281.e4.

80.          Ferrelli, R.M., et al., Health Systems Sustainability and Rare Diseases. 2017. p. 629-640.

81.          Fine, E.J., et al., Targeting insulin inhibition as a metabolic therapy in advanced cancer: A pilot safety and feasibility dietary trial in 10 patients. Nutrition, 2012. 28(10): p. 1028-1035.

82.          Finnell, J.S., et al., Is fasting safe? A chart review of adverse events during medically supervised, water-only fasting. BMC Complementary and Alternative Medicine, 2018. 18(1): p. 67-67.

83.          Finsterer, J., S. Zarrouk-Mahjoub, and J.M. Shoffner, MERRF Classification: Implications for Diagnosis and Clinical Trials. Pediatric Neurology, 2018. 80: p. 8-23.

84.          Freeman, J.M., et al., A blinded, crossover study of the efficacy of the ketogenic diet. Epilepsia, 2009. 50(2): p. 322-325.

85.          Fung, J., Fasting, cellular cleansing and cancer – is there a connection? – Diet Doctor. 2017. p. 1-1.

86.          Gammage, P.A., et al., Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO molecular medicine, 2014. 6(4): p. 458-66.

87.          Gano, L.B., M. Patel, and J.M. Rho, Ketogenic diets, mitochondria, and neurological diseases. Journal of Lipid Research, 2014. 55(11): p. 2211-2228.

88.          Garcia, D. and R.J. Shaw, AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Molecular Cell, 2017. 66: p. 789-800.

89.          García-Castro, J. and I. Singeç, Prospects of Pluripotent and Adult Stem Cells for Rare Diseases. 2017. p. 371-386.

90.          García-Prat, L., M. Martínez-Vicente, and P. Muñoz-Cánoves, Methods for Mitochondria and Mitophagy Flux Analyses in Stem Cells of Resting and Regenerating Skeletal Muscle. 2016. p. 223-240.

91.          Gegg, M.E., Interaction Between Mitochondria and Autophagy. 2015, Springer, Cham. p. 41-61.

92.          Gopal-Srivastava, R. and P. Kaufmann, Facilitating Clinical Studies in Rare Diseases. 2017. p. 125-140.

93.          Grieb, P., et al., Long-term consumption of a carbohydrate-restricted diet does not induce deleterious metabolic effects. Nutrition Research, 2008. 28(12): p. 825-833.

94.          Griffiths, C.E.M. and J.N.W.N. Barker, Pathogenesis and clinical features of psoriasis. The Lancet, 2007. 370(9583): p. 263-271.

95.          Groft, S.C. and M. Posada de la Paz, Preparing for the Future of Rare Diseases. 2017. p. 641-648.

96.          Groft, S.C. and M. Posada de la Paz, Rare Diseases: Joining Mainstream Research and Treatment Based on Reliable Epidemiological Data. 2017. p. 3-21.

97.          Guzmán, M. and C. Blázquez, Is there an astrocyte-neuron ketone body shuttle? Trends in endocrinology and metabolism: TEM. 12(4): p. 169-73.

98.          Hamacher-Brady, A. and N.R. Brady, Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. 2087.

99.          Harcombe, Z., Dietary fat guidelines have no evidence base: Where next for public health nutritional advice? 2017. p. 769-774.

100.        Hardie, D.G., B.E. Schaffer, and A. Brunet, AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends in Cell Biology, 2016. 26(3): p. 190-201.

101.        Hawke, T.J. and D.J. Garry, Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology, 2001. 91(2): p. 534-551.

102.        He, L., et al., Autophagy: The Last Defense against Cellular Nutritional Stress. Advances in Nutrition, 2018. 9(4): p. 493-504.

103.        Hearing, C.M., et al., Physical Exercise for Treatment of Mood Disorders: A Critical Review. Current Behavioral Neuroscience Reports, 2016. 3(4): p. 350-359.

104.        Herst, P.M., et al., Functional Mitochondria in Health and Disease. Frontiers in Endocrinology, 2017. 8: p. 296-296.

105.        Hertz, L., Y. Chen, and H.S. Waagepetersen, Effects of ketone bodies in Alzheimer’s disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. Journal of Neurochemistry, 2015. 134(1): p. 7-20.

106.        Hildebrandt, M., Dipeptidyl aminopeptidases in health and disease. 2003: Kluwer Academic/Plenum Publishers. 359-359.

107.        Hite, A.H., et al., In the face of contradictory evidence: report of the Dietary Guidelines for Americans Committee. Nutrition (Burbank, Los Angeles County, Calif.), 2010. 26(10): p. 915-924.

108.        Holme, E., et al., Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A–>G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. American journal of human genetics, 1993. 52(3): p. 551-556.

109.        Holt, I.J., D. Speijer, and T.B.L. Kirkwood, The road to rack and ruin: selecting deleterious mitochondrial DNA variants. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2014. 369(1646): p. 20130451-20130451.

110.        Imai, Y. and Y. Yamada, [Anesthetic management for patients with mitochondrial disease]. Masui. The Japanese journal of anesthesiology, 2014. 63(1): p. 49-56.

111.        Imamura, K., et al., D-b-Hydroxybutyrate Protects Dopaminergic SH-SY5Y Cells in a Rotenone Model of Parkinson’s Disease.

112.        Ishihara, N., et al., Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. The EMBO Journal, 2006. 25(13): p. 2966-2977.

113.        Iskrov, G., T. Miteva-Katrandzhieva, and R. Stefanov, Health Technology Assessment and Appraisal of Therapies for Rare Diseases. 2017. p. 221-231.

114.        Jinnah, H.A., et al., Treatable inherited rare movement disorders. Movement Disorders, 2018. 33(1): p. 21-35.

115.        Jinnah, H.A., V. Neychev, and E.J. Hess, The Anatomical Basis for Dystonia: The Motor Network Model. Tremor and other hyperkinetic movements (New York, N.Y.), 2017. 7: p. 506-506.

116.        Johnston, B.C., et al., Methods for trustworthy nutritional recommendations NutriRECS (Nutritional Recommendations and accessible Evidence summaries Composed of Systematic reviews): a protocol. BMC Medical Research Methodology, 2018. 18(1): p. 162-162.

117.        Johnston, B.C., et al., The Philosophy of Evidence-Based Principles and Practice in Nutrition. Mayo Clinic proceedings. Innovations, quality & outcomes, 2019. 3(2): p. 189-199.

118.        Julio-Amilpas, A., et al., Protection of hypoglycemia-induced neuronal death by β-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2015. 35(5): p. 851-60.

119.        Kaushik, S., et al., Chaperone-mediated autophagy at a glance. Journal of cell science, 2011. 124(Pt 4): p. 495-9.

120.        Kawamura, M., et al., Ketogenic diet sensitizes glucose control of hippocampal excitability. Journal of Lipid Research, 2014. 55(11): p. 2254-2260.

121.        Keating, S.T. and A. El-Osta, Epigenetics and metabolism. Circulation research, 2015. 116(4): p. 715-736.

122.        Kephart, W., et al., The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study. Sports, 2018. 6(1): p. 1-1.

123.        Khusid, M.A. and M. Vythilingam, The Emerging Role of Mindfulness Meditation as Effective Self-Management Strategy, Part 1: Clinical Implications for Depression, Post-Traumatic Stress Disorder, and Anxiety. Military Medicine, 2016. 181(9): p. 961-968.

124.        Kim, D., et al., Suppression of Brown Adipocyte Autophagy Improves Energy Metabolism by Regulating Mitochondrial Turnover. International journal of molecular sciences, 2019. 20(14).

125.        Kim, D.Y., J. Vallejo, and J.M. Rho, Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. Journal of Neurochemistry, 2010. 114(1): p. no-no.

126.        Kim, I., S. Rodriguez-Enriquez, and J.J. Lemasters, Minireview: Selective Degradation of Mitochondria by Mitophagy. Archives of biochemistry and biophysics, 2007. 462(2): p. 245-245.

127.        Klosinski, L.P., et al., White Matter Lipids as a Ketogenic Fuel Supply in Aging Female Brain: Implications for Alzheimer’s Disease. EBioMedicine, 2015. 2(12): p. 1888-1904.

128.        Kodra, Y., et al., Data Quality in Rare Diseases Registries. 2017. p. 149-164.

129.        Kossoff, E.H. and J.R. McGrogan, Worldwide Use of the Ketogenic Diet. Epilepsia, 2005. 46(2): p. 280-289.

130.        Kossoff, E.H. and J.M. Rho, Ketogenic Diets: Evidence for Short- and Long-term Efficacy. Neurotherapeutics, 2009. 6(2): p. 406-414.

131.        Kujala, U.M., Evidence on the effects of exercise therapy in the treatment of chronic disease. 2009.

132.        Kulkarni, A., J. Chen, and S. Maday, Neuronal autophagy and intercellular regulation of homeostasis in the brain. 2018.

133.        Kurihara, Y., et al., Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast. The Journal of biological chemistry, 2012. 287(5): p. 3265-3272.

134.        Kvarnung, M. and A. Nordgren, Intellectual Disability & Rare Disorders: A Diagnostic Challenge. 2017. p. 39-54.

135.        Laeger, T., C.C. Metges, and B. rn Kuhla, Research review Role of b-hydroxybutyric acid in the central regulation of energy balance §. Appetite. 54: p. 450-455.

136.        Larsson, N.G., et al., Pathogenetic aspects of the A8344G mutation of mitochondrial DNA associated with MERRF syndrome and multiple symmetric lipomas. Muscle & nerve. Supplement, 1995. 3: p. S102-6.

137.        Le, T.T., Incentivizing Orphan Product Development: United States Food and Drug Administration Orphan Incentive Programs. 2017. p. 183-196.

138.        Lear, S.A., et al., A Randomized Controlled Trial of an Extensive Lifestyle Management Intervention (ELMI) Following Cardiac Rehabilitation: Study Design and Baseline Data. Current Controlled Trials in Cardiovascular Medicine, 2002. 3(1): p. 9-9.

139.        Lehmann, D. and R. McFarland, Overview of Approaches to Mitochondrial Disease Therapy. Journal of Inborn Errors of Metabolism and Screening, 2018. 6: p. 2326409817752960-2326409817752960.

140.        Li, N., et al., Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production Downloaded from. 2002, JBC Papers in Press.

141.        Liberti, M.V. and J.W. Locasale, The Warburg Effect: How Does it Benefit Cancer Cells? Trends in biochemical sciences, 2016. 41(3): p. 211-218.

142.        Lillie, E.O., et al., The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Personalized medicine, 2011. 8(2): p. 161-173.

143.        Linertová, R., L. García-Pérez, and I. Gorostiza, Cost-of-Illness in Rare Diseases. 2017. p. 283-297.

144.        Longo, V.D. and S. Panda, Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metabolism, 2016.

145.        Longo, Valter D.D. and Mark P.P. Mattson, Fasting: Molecular Mechanisms and Clinical Applications. Cell Metabolism, 2014. 19(2): p. 181-192.

146.        Louis, E.D., et al., Essential Tremor Associated With Focal Nonnigral Lewy Bodies. Archives of Neurology, 2005. 62(6): p. 1004-1007.

147.        Low, L.A. and D.A. Tagle, Microphysiological Systems (Tissue Chips) and their Utility for Rare Disease Research. 2017. p. 405-415.

148.        Lu, T., et al., Gene regulation and DNA damage in the ageing human brain. Nature, 2004. 429(6994): p. 883-891.

149.        Maier, W.C., R.A. Christensen, and P. Anderson, Post-approval Studies for Rare Disease Treatments and Orphan Drugs. 2017. p. 197-205.

150.        Martinez-Lopez, N., et al., System-wide Benefits of Intermeal Fasting by Autophagy. Cell Metabolism, 2017. 26: p. 856-871.e5.

151.        Mascalzoni, D., et al., The Role of Solidarity(-ies) in Rare Diseases Research. 2017. p. 589-604.

152.        Masino, S.A., et al., Metabolism and epilepsy: Ketogenic diets as a homeostatic link. Brain Research, 2018.

153.        Matilla-Dueñas, A., et al., Rare Neurodegenerative Diseases: Clinical and Genetic Update. 2017. p. 443-496.

154.        Mattson, M.P., et al., Meal frequency and timing in health and disease. Proceedings of the National Academy of Sciences, 2014. 111(47): p. 16647-16653.

155.        Mattson, M.P. and T.V. Arumugam, Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell metabolism, 2018. 27(6): p. 1176-1199.

156.        Mattson, M.P., et al., Intermittent metabolic switching, neuroplasticity and brain health. Nature Publishing Group, 2018. 19.

157.        Mattson, Mark P.P., Energy Intake and Exercise as Determinants of Brain Health and Vulnerability to Injury and Disease. Cell Metabolism, 2012. 16(6): p. 706-722.

158.        McCarthy, C., et al., Epidemiology of Rare Lung Diseases: The Challenges and Opportunities to Improve Research and Knowledge. 2017. p. 419-442.

159.        McCarty, M.F., et al., Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1. Medical Hypotheses, 2015. 85(5): p. 631-639.

160.        McDonald, L., the Ketogenic Diet in Puerperal Pyelitis. Vol. 222. 1933. 764-764.

161.        McDonald, T.J.W. and M.C. Cervenka, The Expanding Role of Ketogenic Diets in Adult Neurological Disorders. Brain sciences, 2018. 8(8).

162.        McKay, J.A. and J.C. Mathers, Diet induced epigenetic changes and their implications for health. Acta Physiologica, 2011. 202(2): p. 103-118.

163.        Mercola, M., Metabolism in the driver ’ s seat. Nature, 2012: p. 6-7.

164.        Meyers, D.E., H.I. Basha, and M.K. Koenig, Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Texas Heart Institute journal, 2013. 40(4): p. 385-94.

165.        Mfinschef, C., et al., The point mutation of mitochondrial DNA characteristic for MERRF disease is found also in healthy people of different ages. 1993. 317293(1).

166.        Milder, J. and M. Patel, Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Research, 2012. 100(3): p. 295-303.

167.        Mishra, P., Interfaces between mitochondrial dynamics and disease. Cell Calcium, 2016. 60(3): p. 190-198.

168.        Moharić, M., Research on prevalence of secondary conditions in individuals with disabilities. International Journal of Rehabilitation Research, 2017. 40(4): p. 297-302.

169.        Moliner, A.M. and J. Waligora, The European Union Policy in the Field of Rare Diseases. 2017. p. 561-587.

170.        Moreno, C.L. and C.V. Mobbs, Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Molecular and Cellular Endocrinology, 2017. 455: p. 33-40.

171.        Nadeau, E., Media ‹ The Healthy Hybrid — WordPress.com.

172.        Newman, J.C. and E. Verdin, Ketone bodies as signaling metabolites. Trends in Endocrinology & Metabolism, 2014. 25(1): p. 42-52.

173.        Nibbeling, E.A.R., et al., Using the shared genetics of dystonia and ataxia to unravel their pathogenesis.

174.        Nielson, J.R. and J.P. Rutter, Lipid-mediated signals that regulate mitochondrial biology. The Journal of biological chemistry, 2018: p. jbc.R117.001655-jbc.R117.001655.

175.        Noakes, T.D. and J. Windt, Evidence that supports the prescription of low-carbohydrate high-fat diets: A narrative review. British Journal of Sports Medicine, 2017. 51(2): p. 133-139.

176.        Novak, I., Mitophagy: A Complex Mechanism of Mitochondrial Removal. Antioxidants & Redox Signaling, 2011.

177.        Oliveira, C.L.P., et al., A Nutritional Perspective of Ketogenic Diet in Cancer: A Narrative Review. Journal of the Academy of Nutrition and Dietetics, 2017.

178.        Palikaras, K. and N. Tavernarakis, Mitochondrial homeostasis: The interplay between mitophagy and mitochondrial biogenesis. Experimental Gerontology, 2014. 56: p. 182-188.

179.        Pampallona, S., et al., Combined Pharmacotherapy and Psychological Treatment for Depression. Archives of General Psychiatry, 2004. 61(7): p. 714-714.

180.        Paoli, A., et al., Ketosis, ketogenic diet and food intake control: A complex relationship. 2015, Frontiers Research Foundation.

181.        Paoli, A., et al., Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. European Journal of Clinical Nutrition, 2013. 67(8): p. 789-796.

182.        Parikh, S., et al., Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genetics in Medicine, 2015. 17(9): p. 689-701.

183.        Park, K.A., et al., Assessment of nurses’ nutritional knowledge regarding therapeutic diet regimens. Nurse Education Today, 2011. 31(2): p. 192-197.

184.        Parker, B., et al., β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle. International Journal of Molecular Sciences, 2018. 19(8): p. 2247-2247.

185.        Patergnani, S. and P. Pinton, Mitophagy and Mitochondrial Balance. 2015, Humana Press, New York, NY. p. 181-194.

186.        Patterson, R.E., et al., Intermittent Fasting and Human Metabolic Health. Journal of the Academy of Nutrition and Dietetics, 2015.

187.        Patterson, R.E. and D.D. Sears, Metabolic Effects of Intermittent Fasting. Annual Review of Nutrition, 2017. 37(1): p. 371-393.

188.        Payne, N.E., et al., The ketogenic and related diets in adolescents and adults-A review. Epilepsia, 2011. 52(11): p. 1941-1948.

189.        Pedersen, B.K. and B. Saltin, Evidence for prescribing exercise as therapy in chronic disease. Scandinavian journal of medicine & science in sports, 2006. 16 Suppl 1: p. 3-63.

190.        Perera, U., B.A. Kennedy, and R.A. Hegele, Multiple Symmetric Lipomatosis (Madelung Disease) in a Large Canadian Family With the Mitochondrial MTTK c.8344A>G Variant. Journal of Investigative Medicine High Impact Case Reports, 2018. 6: p. 2324709618802867-2324709618802867.

191.        Perestelo-Pérez, L., et al., Patient Empowerment and Involvement in Research. 2017, Springer, Cham. p. 249-264.

192.        Pérez-Escuredo, J., et al., Monocarboxylate transporters in the brain and in cancer. Biochimica et biophysica acta, 2016. 1863(10): p. 2481-97.

193.        Pfeffer, G., et al., Treatment for mitochondrial disorders. Cochrane Database of Systematic Reviews, 2012.

194.        Picard, M., D.C. Wallace, and Y. Burelle, The rise of mitochondria in medicine. MITOCH, 2016. 30: p. 105-116.

195.        Pickles, S., P. Vigié, and R.J. Youle, Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Current Biology, 2018. 28(4): p. R170-R185.

196.        Pinto, M. and C.T. Moraes, Mitochondrial genome changes and neurodegenerative diseases. Biochimica et biophysica acta, 2014. 1842(8): p. 1198-207.

197.        Pitceathly, R.D. and C. Viscomi, Effects of ketosis in mitochondrial myopathy: potential benefits of a mitotoxic diet. EMBO molecular medicine, 2016. 8(11): p. 1231-1233.

198.        Poole, O.V., M.G. Hanna, and R.D.S. Pitceathly, Mitochondrial disorders: disease mechanisms and therapeutic approaches. Discovery medicine, 2015. 20(111): p. 325-31.

199.        Puchalska, P. and P.A. Crawford, Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell metabolism, 2017.

200.        Raefsky, S.M. and M.P. Mattson, Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free radical biology & medicine, 2017. 102: p. 203-216.

201.        Rho, J.M. and C.E. Stafstrom, The ketogenic diet: What has science taught us? Epilepsy Research, 2012. 100(3): p. 210-217.

202.        Roos, M., E. López Martin, and M.D. Wilkinson, Preparing Data at the Source to Foster Interoperability across Rare Disease Resources. 2017. p. 165-179.

203.        Rosenberger, T.A., et al., The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain. 2018.

204.        Rossignol, R., Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists. The International Journal of Biochemistry & Cell Biology, 2015. 63: p. 2-9.

205.        Rubinstein, Y.R., M. Posada de la Paz, and M. Mora, Rare Disease Biospecimens and Patient Registries: Interoperability for Research Promotion, a European Example: EuroBioBank and SpainRDR-BioNER. 2017. p. 141-147.

206.        Russell, R.C., H.-X. Yuan, and K.-L. Guan, Autophagy regulation by nutrient signaling. Cell research, 2014. 24(1): p. 42-57.

207.        Saneto, R.P., Genetics of Mitochondrial Disease. Advances in Genetics, 2017. 98: p. 63-116.

208.        Sawyer, S.L., et al., Homozygous mutations in MFN2 cause multiple symmetric lipomatosis associated with neuropathy. Human Molecular Genetics, 2015. 24(18): p. 5109-5114.

209.        Schaefer, A.M., et al., Ovid: External Link. 2006. p. 1932-1934.

210.        Schee genannt Halfmann, S., et al., Personalized Medicine: What’s in it for Rare Diseases? 2017. p. 387-404.

211.        Scholl-Bürgi, S., et al., Ketogenic diets in patients with inherited metabolic disorders. Journal of Inherited Metabolic Disease, 2015. 38(4): p. 765-773.

212.        Schreglmann, S.R., et al., Movement disorders in genetically confirmed mitochondrial disease and the putative role of the cerebellum. Movement Disorders, 2018. 33(1): p. 146-155.

213.        Schurr, A., Lactate: the ultimate cerebral oxidative energy substrate? Journal of Cerebral Blood Flow & Metabolism, 2006. 26: p. 142-152.

214.        Schurr, A., P.J. Magistretti, and J.P. Bolanos, Cerebral glycolysis: a century of persistent misunderstanding and misconception. 2014.

215.        Sebastião, A.M. and J.A. Ribeiro, Neuromodulation and metamodulation by adenosine: Impact and subtleties upon synaptic plasticity regulation. Brain Research, 2015. 1621: p. 102-113.

216.        Sengupta, S., et al., mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature, 2010. 468(7327): p. 1100-1104.

217.        Seyfried, B.T.N., et al., Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet. Journal of cancer research and therapeutics, 2009. 5 Suppl 1(9): p. S7–15.

218.        Seyfried, T.N., Cancer as a mitochondrial metabolic disease. Frontiers in Cell and Developmental Biology, 2015. 3: p. 43-43.

219.        Shoffner, J.M., et al., Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell, 1990. 61(6): p. 931-937.

220.        Shoffner, J.M., M.T. Lott, and D.C. Wallace, MERRF: a model disease for understanding the principles of mitochondrial genetics. Revue neurologique, 1991. 147(6-7): p. 431-5.

221.        Sidorova-Darmos, E., R. Sommer, and J.H. Eubanks, The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions. Frontiers in cellular neuroscience, 2018. 12: p. 196-196.

222.        Soltis, A.R., et al., No Title. 2017. 21(11): p. 3317-3328.

223.        Son, J.H., et al., Neuronal autophagy and neurodegenerative diseases. EXPERIMENTAL and MOLECULAR MEDICINE, 2012. 44(2): p. 89-98.

224.        Spencer, S., Fat and heart disease: challenging the dogma. The Lancet, 2017. 390(10096): p. 731-731.

225.        Springer, M.Z. and K.F. Macleod, In Brief: Mitophagy: mechanisms and role in human disease. The Journal of Pathology, 2016. 240(3): p. 253-255.

226.        Stacpoole, P.W., Why are there no proven therapies for genetic mitochondrial diseases? Mitochondrion, 2011. 11(5): p. 679-85.

227.        Stafstrom, C.E. and J.M. Rho, The Ketogenic Diet as a Treatment Paradigm for Diverse Neurological Disorders. Frontiers in Pharmacology, 2012. 3: p. 59-59.

228.        Stewart, J.B. and P.F. Chinnery, The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nature Reviews Genetics, 2015. 16(9): p. 530-542.

229.        Stuckler, D., G. Ruskin, and M. McKee, Complexity and conflicts of interest statements: a case-study of emails exchanged between Coca-Cola and the principal investigators of the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Journal of Public Health Policy, 2017: p. 1-8.

230.        Suliman, H.B. and C.A. Piantadosi, Mitochondrial Quality Control as a Therapeutic Target. Pharmacological reviews, 2016. 68(1): p. 20-48.

231.        Szewc, M., et al., Madelung’s disease – progressive, excessive, and symmetrical deposition of adipose tissue in the subcutaneous layer: case report and literature review. Diabetes, metabolic syndrome and obesity : targets and therapy, 2018. 11: p. 819-825.

232.        Szuhai, K., et al., Simultaneous A8344G heteroplasmy and mitochondrial DNA copy number quantification in myoclonus epilepsy and ragged-red fibers (MERRF) syndrome by a multiplex molecular beacon based real-time fluorescence PCR. Nucleic acids research, 2001. 29(3): p. E13-E13.

233.        Taivassalo, T., et al., Gene shifting: a novel therapy for mitochondrial myopathy. Human molecular genetics, 1999. 8(6): p. 1047-52.

234.        Taivassalo, T. and R.G. Haller, Implications of exercise training in mtDNA defects—use it or lose it? Biochimica et Biophysica Acta (BBA) – Bioenergetics, 2004. 1659(2-3): p. 221-231.

235.        Taivassalo, T. and R.G. Haller, Exercise and training in mitochondrial myopathies. Medicine and science in sports and exercise, 2005. 37(12): p. 2094-101.

236.        Takahashi, H. and H. Iizuka, Psoriasis and metabolic syndrome. The Journal of Dermatology, 2012. 39(3): p. 212-218.

237.        Talboom-Kamp, E.P., et al., An eHealth Platform to Manage Chronic Disease in Primary Care: An Innovative Approach. interactive Journal of Medical Research, 2016. 5(1): p. e5-e5.

238.        Tan, V.P. and S. Miyamoto, Nutrient-sensing mTORC1: Integration of metabolic and autophagic signals. Journal of Molecular and Cellular Cardiology, 2016. 95: p. 31-41.

239.        Taruscio, D., et al., Primary Prevention of Congenital Anomalies: Special Focus on Environmental Chemicals and other Toxicants, Maternal Health and Health Services and Infectious Diseases. 2017. p. 301-322.

240.        Taruscio, D., et al., Undiagnosed Diseases: Italy-US Collaboration and International Efforts to Tackle Rare and Common Diseases Lacking a Diagnosis. 2017. p. 25-38.

241.        Teicholz, N., The scientific report guiding the US dietary guidelines: is it scientific? BMJ, 2015: p. h4962-h4962.

242.        Theurey, P. and J. Rieusset, Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases. 2017. p. 32-45.

243.        Thevenet, J., et al., Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte–neuron lactate and ketone body shuttle systems. The FASEB Journal, 2016. 30(5): p. 1913-1926.

244.        Thompson, R., A. Robertson, and H. Lochmüller, Natural History, Trial Readiness and Gene Discovery: Advances in Patient Registries for Neuromuscular Disease. 2017. p. 97-124.

245.        Tinsley, G.M., et al., Time-restricted feeding in young men performing resistance training: A randomized controlled trial†. European Journal of Sport Science, 2017. 17(2): p. 200-207.

246.        Toman, R., Coxiella burnetii : recent advances and new perspectives in research of the Q fever bacterium. 2012: Springer.

247.        Tremp, M., et al., Adipose-Derived Stromal Cells from Lipomas: Isolation, Characterisation and Review of the Literature. Pathobiology, 2016. 83(5): p. 258-266.

248.        Twig, G., et al., Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO journal, 2008. 27(2): p. 433-446.

249.        Urv, T.K. and M.A. Parisi, Newborn Screening: Beyond the Spot. 2017. p. 323-346.

250.        Vallance, H.D., et al., A Case of Sporadic Infantile Histiocytoid Cardiomyopathy Caused by the A8344G (MERRF) Mitochondrial DNA Mutation. Pediatric Cardiology, 2004. 25(5): p. 538-540.

251.        Vanitallie, T.B. and T.H. Nufert, Ketones: Metabolism’s Ugly Duckling. Nutrition Reviews, 2003. 61(10): p. 327-341.

252.        Vasileiou, P.V.S., I. Mourouzis, and C. Pantos, No Title. 2017. 18(8): p. 1821-1821.

253.        Veech, R.L., The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2004. 70(3): p. 309-319.

254.        Vidali, S., et al., Mitochondria: The ketogenic diet—A metabolism-based therapy. International Journal of Biochemistry and Cell Biology, 2015. 63: p. 55-59.

255.        Viscomi, C., E. Bottani, and M. Zeviani, Emerging concepts in the therapy of mitochondrial disease. BBA – Bioenergetics, 2015. 1847: p. 544-557.

256.        Volek, J.S., et al., Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. Progress in Lipid Research, 2008. 47(5): p. 307-318.

257.        Volek, J.S., T. Noakes, and S.D. Phinney, Rethinking fat as a fuel for endurance exercise. European Journal of Sport Science, 2015. 15(1): p. 13-20.

258.        Wallace, D.C., The mitochondrial genome in human adaptive radiation and disease: On the road to therapeutics and performance enhancement. 2005.

259.        Wallace, D.C. and D. Chalkia, Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor perspectives in biology, 2013. 5(11): p. a021220-a021220.

260.        Wallace, D.C. and W. Fan, Energetics, epigenetics, mitochondrial genetics. Mitochondrion, 2010. 10(1): p. 12-31.

261.        Wegman, M.P., et al., Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation research, 2015. 18(2): p. 162-72.

262.        Weisfeld-Adams, J.D., et al., Differential diagnosis of Mendelian and mitochondrial disorders in patients with suspected multiple sclerosis. Brain : a journal of neurology, 2015. 138(Pt 3): p. 517-39.

263.        Westerterp-Plantenga, M.S., S.G. Lemmens, and K.R. Westerterp, Dietary protein – its role in satiety, energetics, weight loss and health. British Journal of Nutrition, 2012. 108(S2): p. S105–S112.

264.        Wikstrom, J.D., G. Twig, and O.S. Shirihai, What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? The International Journal of Biochemistry & Cell Biology, 2009. 41(10): p. 1914-1927.

265.        Wolf, J.A., Patient Experience Journal Volume 6 Issue 2 Special Issue: The Role of Technology and Innovation in Patient Experience Reframing innovation and technology for healthcare: A commitment to the human experience. Health Services Administration Commons, and the Health Services Research Commons Patient Experience Journal. 6(2).

266.        Yoo, S.-M. and Y.-K. Jung, A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol. Cells, 2018. 41(1): p. 18-26.

267.        Youm, Y.-H., et al., The ketone metabolite $\backslashbeta{\{}\backslash{\$}{\}}-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Medicine, 2015. 21(3): p. 263-269.

268.        Youm, Y.-H., et al., The ketone metabolite $\beta{\$}-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Medicine, 2015. 21(3): p. 263-269.

269.        Youm, Y.-H., et al., The ketone metabolite $β$-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Medicine, 2015. 21(3): p. 263-269.

270.        Youm, Y.-H., et al., The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nature Medicine, 2015. 21(3): p. 263-269.

271.        Young Kim, D., et al., Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through K ATP Channels. 2015.

272.        Yuan, H.-X., Y. Xiong, and K.-L. Guan, Nutrient Sensing, Metabolism, and Cell Growth Control. Molecular Cell, 2013. 49(3): p. 379-387.

273.        Yun, J. and J.-H. Um, Title: Emerging role of mitophagy in human diseases and physiology Emerging role of mitophagy in human diseases and physiology. 2017. 50(6): p. 299-307.

274.        Zajac, A., et al., The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients, 2014. 6(7): p. 2493-2508.